Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement.

五礦資源有限公司

(Incorporated in Hong Kong with limited liability)

(STOCK CODE: 1208)

MINERAL RESOURCES AND ORE RESERVES STATEMENT AS AT 30 JUNE 2022

This announcement is made by MMG Limited (Company or MMG and, together with its subsidiaries, the Group) pursuant to rule 13.09(2) of the Rules Governing the Listing of Securities on The Stock Exchange of Hong Kong Limited (Listing Rules) and the Inside Information Provisions (as defined in the Listing Rules) under Part XIVA of the Securities and Futures Ordinance (Chapter 571 of the Laws of Hong Kong).

The Board of Directors of the Company (Board) is pleased to report the Group's updated Mineral Resources and Ore Reserves Statement as at 30 June 2022 (Mineral Resources and Ore Reserves Statement).

The key changes to Mineral Resources and Ore Reserves Statement as at 30 June 2022 are:

- The Group's Mineral Resources (contained metal) have increased for copper (5%), cobalt (11%), molybdenum (2%) and gold (2%). Estimated Mineral Resource decreases (contained metal) have occurred in zinc (3%), lead (10%) and silver (1%).
- The Group's Ore Reserves (contained metal) have decreased for copper (1%), zinc (8%), lead (19%), silver (5%), gold (5%) and molybdenum (13%). Cobalt metal has decreased slightly by 0.2%.

For copper metal, an increase in metal price assumptions have resulted in a net positive variance in Resources. At Las Bambas continuous improvement to the geological model through drilling and orebody knowledge study have also contributed to increased Resources. Otherwise, the main reasons for changes are depletion at all sites. Other drivers have not resulted in material changes to either Mineral Resources or Ore Reserves. Continued depletion at Sulfobamba by illegal mining is the only negative variance. Copper metal Mineral Resources additions have replaced depletion by approximately 150% in 2022, driven primarily by Las Bambas.

For zinc metal, the main reasons for the changes are depletion at the two Australian sites and narrower than expected zones from some Dugald River drilling results combined with changes to modelling practices at the site.

MINERAL RESOURCES AND ORE RESERVES STATEMENT

30 June 2022

All data reported here are on a 100% asset basis, with MMG's attributable interest shown against each asset within the Mineral Resources and Ore Reserves tables (pages 4 to 9).

MINERAL RESOURCES AND ORE RESERVES STATEMENT

A copy of the executive summary of the Mineral Resources and Ore Reserves Statement is annexed to this announcement.

The information referred to in this announcement has been extracted from the report titled Mineral Resources and Ore Reserves Statement as at 30 June 2022 published on 25 October 2022 and is available to view on www.mmg.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the Mineral Resources and Ore Reserves Statement and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the Mineral Resources and Ore Reserves Statement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the Mineral Resources and Ore Reserves Statement.

By order of the Board

MMG Limited

Li Liangang

Interim CEO and Executive Director

Hong Kong, 25 October 2022

As at the date of this announcement, the Board comprises seven directors, of which one is an executive director, namely Mr Li Liangang; three are non-executive directors, namely Mr Jiao Jian (Chairman), Mr Zhang Shuqiang and Mr Xu Jiqing; and three are independent non-executive directors, namely Dr Peter William Cassidy, Mr Leung Cheuk Yan and Mr Chan Ka Keung, Peter.

MINERAL RESOURCES AND ORE RESERVES STATEMENT 30 June 2022

EXECUTIVE SUMMARY

Mineral Resources and Ore Reserves for MMG have been estimated as at 30 June 2022 and are reported in accordance with the guidelines in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (2012 JORC Code) and Chapter 18 of the Listing Rules. Mineral Resources and Ore Reserves tables are provided on pages 4 to 9, which include the 30 June 2022 and 30 June 2021 estimates for comparison. The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources that have been converted to Ore Reserves. All supporting data are provided within the Technical Appendix, available on the MMG website.

Mineral Resources and Ore Reserves information in this statement have been compiled by Competent Persons (as defined by the 2012 JORC Code). Each Competent Person consents to the inclusion of the information in this report, that they have provided in the form and context in which it appears. Competent Persons are listed on page 10.

MMG has established processes and structures for the governance of Mineral Resources and Ore Reserves estimation and reporting. MMG has a Mineral Resources and Ore Reserves Committee that regularly convenes to assist the MMG Governance and Nomination Committee and the Board of Directors with respect to the reporting practices of the Company in relation to Mineral Resources and Ore Reserves, and the quality and integrity of these reports of the Group.

Key changes to the Mineral Resources (contained metal) since the 30 June 2021 estimate relate to depletion at all sites together with increased costs, changes in metal price assumptions, increases to cut-off grades and updates to the models at all sites. Geological models are continually improved and updated with new drilling information and result in both increases and decreases. Relatively small increases have occurred at Ferrobamba (Las Bambas) while all other copper deposits have increased by less than 1% compared to the global change. There are no material changes at the Kinsevere mine whereas copper and cobalt have increased in the regional DRC satellite copper deposits resulting from new drilling at Sokoroshe 2 and an increase of the copper price assumption. Zinc metal increases are more than twice the depleted metal at Rosebery while at Dugald River, depletion (43%) and model changes (57%), partially driven by narrower intersections in some areas, explains the negative zinc variance at the site. The lead and silver negative variances are partially explained by depletion of those metals, 18% and 27% respectively, with the majority of the negative variance due to adverse model changes.

Key changes to the Ore Reserves (contained metal) since the 30 June 2021 estimate are mostly related to depletion¹. An increase in contained copper metal at Las Bambas in the Ferrobamba deposit are due to improved grades and changes resulting from the pit design. Other pits show no material change. Milled depletion explains 90% of the negative zinc metal variance at Dugald River, but only 30% and 50% of the lead and silver negative variances respectively.

Pages 11 and 12 provide further discussion of the Mineral Resources and Ore Reserves changes.

On 13 October 2022, MMG made a voluntary announcement regarding an invasion of both Sokoroshe 2 and Nambulwa project sites. Kinsevere Operation intends to mine both of these deposits as part of its Expansion Project and its future operations. MMG maintains that it holds current and valid mining lease agreements with Gécamines over these deposits and has announced it has commenced international arbitration before the International Chamber of Commerce on 21 October 2022.

¹ Depletion in this report refers to material processed by the mill and depleted from the Mineral Resources and Ore Reserves through mining and processing.

MINERAL RESOURCES AND ORE RESERVES STATEMENT 30 June 2022

MINERAL RESOURCES¹

All data reported here is on a 100% asset basis, with MMG's attributable interest shown against each asset within brackets.

				2022		Tonnes Cu 7n Ph Ag Au Mo							21			
Deposit	Tonnes (Mt)	Cu (%)	Zn (%)	Pb (%)	Ag (g/t)	Au (g/t)	Mo (ppm)	Co (%)	Tonnes (Mt)	Cu (%)	Zn (%)	Pb (%)	Ag (g/t)	Au (g/t)	Mo (ppm)	(%
Las Bambas (6	2.5%)			_	•	-		•		-	-	•	-			-
Ferrobamba O	xide Copper															
Indicated	0.03	1.7							0.4	1.4						
Inferred									0.01	1.1						
Total	0.03	1.7							0.4	1.4						
Ferrobamba P	rimary Copp	er														
Measured	470	0.56			2.3	0.04	210		410	0.59			2.6	0.05	220	
Indicated	270	0.70			3.3	0.06	180		280	0.70			3.2	0.06	200	
Inferred	110	0.84			4.2	0.08	170		72	0.92			3.9	0.08	140	
Total	850	0.64			2.9	0.05	190		770	0.66			3.0	0.06	210	
Ferrobamba Total	850								770							
Chalcobamba	Oxide Coppe	r														
Indicated	6.8	1.4							6.5	1.5						
Inferred	0.06	1.5							0.5	1.7						
Total	6.9	1.4							7.0	1.5						
Chalcobamba		per														
Measured	140	0.54			1.7	0.02	140		120	0.52			1.6	0.02	150	
Indicated	180	0.64			2.5	0.03	110		170	0.70			2.7	0.03	120	
Inferred	29	0.56			2.4	0.03	130		27	0.60			2.5	0.03	140	
Total	340	0.60			2.1	0.03	120		320	0.63			2.3	0.03	130	
Chalcobamba	2.4=				-				20-							
Total	347								327							
Sulfobamba P	rimary Copp	er														
Indicated	84	0.67			4.7	0.02	170		80	0.68			4.8	0.02	170	
Inferred	98	0.58			6.5	0.02	120		96	0.58			6.5	0.02	120	
Total	180	0.62			5.7	0.02	140		180	0.63			5.7	0.02	140	
Sulfobamba Total	180	0.62			5.7	0.02	140		180	0.63			5.7	0.02	140	
Oxide Copper	Stockpile															
Indicated	14	1.1							13	1.1						
Total	14	1.1							13	1.1						
Sulphide Stock	kpile															
Measured	30	0.38			2.2		130		26	0.39			1.8		140	
Total	30	0.38			2.2		130		26	0.39			1.8		140	
Las Bambas																
Total	1,400								1,300							

MMG | 2022 Mineral Resources & Ore Reserves Statement

¹ S.I. units used for metals of value; Cu=copper, Zn=zinc, Pb=lead, Ag=silver, Au=gold, Mo=molybdenum, Co=cobalt.

MINERAL RESOURCES AND ORE RESERVES STATEMENT 30 June 2022

MINERAL RESOURCES¹

	Z022							2021								
Deposit	Tonnes (Mt)	Cu (%)	Zn (%)	Pb (%)	Ag (g/t)	Au (g/t)	Mo (ppm)	Co (%)	Tonnes (Mt)	Cu (%)	Zn (%)	Pb (%)	Ag (g/t)	Au (g/t)	Mo (ppm)	Co (%)
Kinsevere	(100%)															
Oxide Cop	per															
Measured	2.6	2.9						0.08	1.2	3.2						0.1
Indicated	4.4	2.6						0.12	5.5	2.7						0.0
Inferred	2.0	2.0						0.09	2.2	2.1						0.0
Total	9.0	2.6						0.10	8.9	2.7						0.0
Transition	Mixed Cop	per Or	e													
Measured	1.0	2.2						0.16	0.8	2.0						0.1
Indicated	2.5	2.0						0.12	2.2	2.1						0.0
Inferred	1.3	1.7						0.08	1.1	1.6						0.1
Total	4.8	1.9						0.12	4.1	1.9						0.2
Primary Co	pper															
Measured	2.2	2.5						0.23	1.5	2.6						0.2
Indicated	18	2.2						0.10	19	2.3						0.1
Inferred	10	1.6						0.07	9.2	1.7						0.0
Total	31	2.1						0.10	29	2.1						0.1
Oxide-TM0	O Cobalt															
Measured									0.02	0.46						0.3
Indicated	0.70	0.21						0.32	0.16	0.35						0.3
Inferred	0.73	0.16						0.33	0.99	0.23						0.3
Total	1.4	0.18						0.32	1.2	0.3						0.3
Primary Co	balt															
Measured									0.01	0.54						0.2
Indicated	0.17	0.31						0.20	0.15	0.57						0.2
Inferred	0.24	0.26						0.22	0.17	0.33						0.2
Total	0.41	0.28						0.21	0.34	0.44						0.2
Stockpiles																
Measured																
Indicated	14	1.5							16	1.6						
Total	14	1.5							16	1.6						
Kinsevere									59	2.0						
Total	61	1.9							39	2.0						

MMG | 2022 Mineral Resources & Ore Reserves Statement

¹ S.I. units used for metals of value; Cu=copper, Zn=zinc, Pb=lead, Ag=silver, Au=gold, Mo=molybdenum, Co=cobalt.

MINERAL RESOURCES AND ORE RESERVES STATEMENT 30 June 2022

MINERAL RESOURCES¹

)22							20	21			
Deposit	Tonnes (Mt)	Cu (%)	Zn (%)	Pb (%)	Ag (g/t)	Au (g/t)	Mo (ppm)	Co (%)	Tonnes (Mt)	Cu (%)	Zn (%)	Pb (%)	Ag (g/t)	Au (g/t)	Mo (ppm)	Co (%)
Sokoroshe 2 (100	0%)					-		-			•		•	-	•	
Oxide Copper																
Measured																
Indicated	2.8	2.1						0.39	1.7	2.4						0.35
Inferred	0.16	1.1						0.10	0.02	3.4						0.07
Total	2.9	2.1						0.37	1.7	2.4						0.34
Transition Mixed	l Copper C	Ore														
Measured																
Indicated	0.07	1.6						0.23	0.1	0.9						1.50
Inferred									0.2	2.5						0.24
Total	0.07	1.6						0.23	0.3	1.8						0.75
Primary Copper																
Measured																
Indicated	0.62	1.50						0.47								
Inferred									0.67	1.7						0.58
Total	0.62	1.5						0.47	0.67	1.7						0.58
Oxide Cobalt																
Measured																
Indicated	0.63	0.24						0.51	0.47	0.41						0.56
Inferred	0.31	0.35						0.31	0.10	0.25						0.34
Total	0.93	0.27						0.45	0.57	0.4						0.52
Primary Cobalt																
Measured																
Indicated	0.047	0.53						0.64	0.012	0.14						0.34
Inferred									0.004	0.36						0.65
Total	0.047	0.53						0.64	0.016	0.20						0.42
Sokoroshe 2																
Total	4.6	1.6						0.40	3.3	1.9						0.46
Nambulwa (100%	%)	-		-		9	='	-			•		•	-	•	
Oxide Copper																
Measured																
Indicated	1.1	2.2						0.11	1.0	2.2						0.11
Inferred	0.10	1.9						0.07	0.09	1.9						0.07
Total	1.2	2.1						0.11	1.1	2.2						0.11
Transition Mixed	l Copper C	Ore														
Measured	- •															
Indicated	0.02	3.3						0.18								
Inferred																
Total	0.02	3.3						0.18								
Oxide Cobalt																
Measured																
Indicated	0.17	0.14						0.27	0.17	0.15						0.27
Inferred	****															
Total	0.17	0.14						0.27	0.2	0.1						0.27
Nambulwa																
Total	1.4	1.9						0.13	1.3	2.0						0.13

¹ S.I. units used for metals of value; Cu=copper, Zn=zinc, Pb=lead, Ag=silver, Au=gold, Mo=molybdenum, Co=cobalt.

MINERAL RESOURCES AND ORE RESERVES STATEMENT 30 June 2022

MINERAL RESOURCES¹

				2022								20)21			
Deposit	Tonnes (Mt)	Cu (%)	Zn (%)	Pb (%)	Ag (g/t)	Au (g/t)	Mo (ppm)	Co (%)	Tonnes (Mt)	Cu (%)	Zn (%)	Pb (%)	Ag (g/t)	Au (g/t)	Mo (ppm)	Co (%)
DZ (100%)																
Oxide Copp	oer															
Measured																
Indicated	0.94	1.8						0.13	0.79	2.0						0.13
Inferred	0.04	2.0						0.12	0.04	2.0						0.13
Total	0.98	1.8						0.13	0.82	2.0						0.13
Oxide Coba	alt															
Measured																
Indicated	0.33	0.22						0.27	0.35	0.26						0.27
Inferred	0.01	0.14						0.25	0.01	0.14						0.25
Total	0.33	0.22						0.27	0.35	0.26						0.27
DZ Total	1.3	1.4						0.16	1.2	1.5						0.17
Mwepu (10	0%)															
Oxide Copp	oer															
Measured																
Indicated	0.75	2.5						0.17	0.86	2.4						0.18
Inferred	0.45	2.7						0.29	0.57	2.4						0.28
Total	1.2	2.6						0.22	1.4	2.4						0.22
TMO Coppe	er															
Measured																
Indicated	0.20	1.3						0.18								
Inferred	0.18	1.4						0.22								
Total	0.38	1.3						0.20								
Oxide Coba	alt															
Measured																
Indicated	0.04	0.7						0.45	0.10	0.56						0.32
Inferred	0.05	0.7						0.44	0.12	0.61						0.33
Total	0.09	0.7						0.45	0.22	0.59						0.33
Primary Co	balt															
Measured																
Indicated	0.07	0.25						0.31	0.07	0.25						0.31
Inferred	0.20	0.27						0.42	0.20	0.27						0.41
Total	0.27	0.26						0.39	0.27	0.26						0.39
Mwepu Total	1.9	1.9	-					0.29	1.9	1.9						0.25

¹ S.I. units used for metals of value; Cu=copper, Zn=zinc, Pb=lead, Ag=silver, Au=gold, Mo=molybdenum, Co=cobalt.

MINERAL RESOURCES AND ORE RESERVES STATEMENT 30 June 2022

MINERAL RESOURCES¹

				2022								202	21			
Deposit	Tonnes	Cu	Zn	Pb	Ag	Au	Мо	Co	Tonnes	Cu	Zn	Pb	Ag	Au	Мо	Co
-	(Mt)	(%)	(%)	(%)	(g/t)	(g/t)	(ppm)	(%)	(Mt)	(%)	(%)	(%)	(g/t)	(g/t)	(ppm)	(%)
Dugald River (100%)															
Primary Zinc																
Measured	12		13.5	2.2	71				13		13.1	2.4	80			
Indicated	15		12.0	0.9	16				17		11.6	1.4	21			
Inferred	33		11.3	0.8	8.1				36		11.2	0.8	9			
Total	61		11.9	1.1	23				66		11.7	1.3	26			
Primary Coppe	er															
Inferred	4.5	1.5				0.1			4.5	1.5				0.1		
Total	4.5	1.5				0.1			4.5	1.5				0.1		
Dugald	65								70							
River Total	05								70							
Rosebery (100	%)	•	-	-	•	•	•					•	•		-	
Rosebery																
Measured	7.3	0.20	7.4	2.7	118	1.2			6.5	0.22	7.7	3.0	135	1.4		
Indicated	4.6	0.18	6.9	1.9	75	1.1			3.1	0.17	6.5	2.3	117	1.2		
Inferred	7.9	0.19	7.0	2.1	77	1.1			7.1	0.21	8.6	2.5	91	1.2		
Total	20	0.19	7.1	2.3	92	1.1			17	0.21	7.9	2.6	113	1.3		
Rosebery	20								17							
Total	20								17							
High Lake (100)%)															
Measured																
Indicated	7.9	3.0	3.5	0.3	83	1.3			7.9	3.0	3.5	0.3	83	1.3		
Inferred	6.0	1.8	4.3	0.4	84	1.3			6.0	1.8	4.3	0.4	84	1.3		
Total	14	2.5	3.8	0.4	84	1.3			14	2.5	3.8	0.4	84	1.3		
Izok Lake (100	%)															
Measured																
Indicated	13	2.4	13.3	1.4	73	0.18			13	2.4	13.3	1.4	73	0.18		
Inferred	1.2	1.5	10.5	1.3	73	0.21			1.2	1.5	10.5	1.3	73	0.21		
Total	15	2.3	13.1	1.4	73	0.18			15	2.3	13.1	1.4	73	0.18		

MMG | 2022 Mineral Resources & Ore Reserves Statement

¹ S.I. units used for metals of value; Cu=copper, Zn=zinc, Pb=lead, Ag=silver, Au=gold, Mo=molybdenum, Co=cobalt.

MINERAL RESOURCES AND ORE RESERVES STATEMENT 30 June 2022

ORE RESERVES¹

All data reported here is on a 100% asset basis, with MMG's attributable interest shown against each asset within brackets.

Ore Reserves

Ore Reserves																
				20)22							20)21			
Deposit	Tonnes (Mt)	Cu (%)	Zn (%)	Pb (%)	Ag (g/t)	Au (g/t)	Mo (ppm)	Co (%)	Tonnes (Mt)	Cu (%)	Zn (%)	Pb (%)	Ag (g/t)	Au (g/t)	Mo (ppm)	Co (%)
Las Bambas (6	52.5%)															
Ferrobamba P	rimary Cop	per														
Proved	340	0.65			2.9	0.05	200		360	0.61			2.7	0.05	220	
Probable	130	0.91			4.6	0.08	180		160	0.77			3.5	0.07	190	
Total	470	0.72			3.4	0.06	200		520	0.66			2.9	0.06	210	
Chalcobamba	Primary Co	pper														
Proved	100	0.65			2.1	0.03	130		83	0.60			1.9	0.02	140	
Probable	130	0.71			2.7	0.03	110		140	0.74			2.7	0.03	120	
Total	230	0.68			2.4	0.03	120		220	0.69			2.4	0.03	130	
Sulfobamba P Proved	rimary Cop	per														
Probable	54	0.80			5.9	0.03	160		56	0.79			5.8	0.03	160	
Total	54	0.80			5.9	0.03	160		56	0.79			5.8	0.03	160	
Primary Coppe	er Stockpile	s														
Proved	30	0.38			2.2		130		26	0.39			1.8		140	
Total	30	0.38			2.2		130		26	0.39			1.8		180	
Las Bambas Total	780	0.70			3.2		170		820	0.67			3.0		180	
Kinsevere (100	0%)															
Oxide/TMO Co		Cobalt														
Proved	3.0	2.5						0.12	1.0	3.4						0.15
Probable	5.7	2.2						0.12	3.8	2.9						0.11
Total	8.6	2.3						0.12	4.8	3.0						0.12
Primary Coppe	er and Coba	ılt														
Proved	1.9	2.3						0.21	1.8	2.5						0.24
Probable	16	2.2						0.10	18	2.4						0.11
Total	18	2.2						0.11	19	2.4						0.12
Stockpiles																
Proved																
Probable	14	1.5							16	1.6						
Total	14	1.5							16	1.6						
Kinsevere Total	40	2.0							40	2.1						
Dugald River (Primary Zinc	(100%)															
Proved	12		10.9	1.9	62				12		11.0	2.1	70			
Probable	10		10.1	0.9	14				12		10.1	1.3	18			
Total	22		10.5	1.4	39				24		10.6	1.7	44			
Dugald River																
Total	22		10.5	1.4	39				24		10.6	1.7	44			
Rosebery (100)%)				·											
Proved	4.8	0.19	6.7	2.7	120	1.2			5.3	0.19	6.4	2.6	120	1.3		
Probable	0.77	0.20	6.1	2.1	79	1.3			0.84	0.18	5.5	2.0	110	1.1		
Total	5.5	0.19	6.6	2.6	110	1.2			6.1	0.19	6.3	2.5	120	1.2		
Rosebery Total	5.5	0.19	6.6	2.6	110	1.2			6.1	0.19	6.3	2.5	120	1.2		

¹ S.I. units used for metals of value; Cu=copper, Zn=zinc, Pb=lead, Ag=silver, Au=gold, Mo=molybdenum.

MINERAL RESOURCES AND ORE RESERVES STATEMENT 30 June 2022

COMPETENT PERSONS

Table 1: Competent Persons for Mineral Resources, Ore Reserves and Corporate

Deposit	Accountability	Competent Person	Professional Membership	Employer
MMG Mineral Resources and Ore Reserves Committee	Mineral Resources	Rex Berthelsen ¹	HonFAusIMM(CP)	MMG
MMG Mineral Resources and Ore Reserves Committee	Ore Reserves	Cornel Parshotam ¹	MAusIMM	MMG
MMG Mineral Resources and Ore Reserves Committee	Metallurgy: Mineral Resources / Ore Reserves	Amy Lamb ¹	MAusIMM(CP)	MMG
Las Bambas	Mineral Resources	Hugo Rios ¹	MAusIMM(CP)	MMG
Las Bambas	Ore Reserves	Jorge Valverde ¹	MAusIMM(CP)	MMG
Kinsevere	Mineral Resources	Jeremy Witley ²	Pr.Sci.Nat.	The MSA Group (Pty) Ltd
Kinsevere	Ore Reserves	Dean Basile	MAusIMM(CP)	Mining One Pty Ltd
Rosebery	Mineral Resources	Maree Angus	MAusIMM(CP)	AMC Consultants Pty Ltd
Rosebery	Ore Reserves	Andrew Robertson	FAusIMM	Mining Plus Pty Ltd
Dugald River	Mineral Resources	Andrew Fowler	MAusIMM(CP)	Mining Plus Pty Ltd
Dugald River	Ore Reserves	Philip Bremner	FAusIMM	Oreteck Pty Ltd
High Lake, Izok Lake	Mineral Resources	Allan Armitage ³	MAPEG (P.Geo)	Formerly MMG

The information in this report that relates to Mineral Resources and Ore Reserves is based on information compiled by the listed Competent Persons, who are Members or Fellows of the Australasian Institute of Mining and Metallurgy (AuslMM), the Australian Institute of Geoscientists (AIG) or a Recognised Professional Organisation (RPO) and have sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Each of the Competent Persons has given consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

¹ Participants in the MMG Long-Term Incentive Plans which may include Mineral Resources and Ore Reserves growth as a performance condition

² South African Council for Natural Scientific Professions, Professional Natural Scientist

 $^{^{\}rm 3}$ Member of the Association of Professional Engineers and Geoscientists of British Columbia

MINERAL RESOURCES AND ORE RESERVES STATEMENT

30 June 2022

SUMMARY OF SIGNIFICANT CHANGES

MINERAL RESOURCES

Mineral Resources as at 30 June 2022 have changed, since the 30 June 2021 estimate, for several reasons with the most significant changes outlined in this section.

Mineral Resources (contained metal) have increased for copper (5%), cobalt (11%), molybdenum (2%) and gold (2%). Zinc (-3%), lead (-10%) and silver (-1%) have decreased from 2021. Variations to Mineral Resources (contained metal) on an individual site basis are discussed below:

Increases:

The increases in Mineral Resources (contained metal) are due to:

- metal prices, specifically copper, has increased the overall contained copper metal and contributed by association to an increase in cobalt in the Kinsevere and satellite DRC deposits; and
- improvements in orebody knowledge specifically at Las Bambas and Rosebery. At Rosebery, continued drilling success in the middle and lower mine areas, specifically Z lens, combined with a reduction in cut-off grade, has further delineated a combined 3.1Mt of additional resource as extensions to the deposit. An increase in metal of 10% copper, 7% zinc, 3% lead and 6% gold have resulted. At Las Bambas, copper metal has increased by 6%, silver by 7% and molybdenum by 2%.

Decreases:

The decreases in Mineral Resources (contained metal) are due to:

- · depletion at all producing operations;
- drilling at Dugald River has intersected some narrower zones than expected and has partially contributing to the -6% zinc metal reduction. Changes to the modelling procedures aimed at addressing a negative reconciliation in by-products have contributed to the majority of the lead (-20%) and silver (-19%) variances. This largely impacts the Indicated category; and
- removal of a further 10kt Cu from Sulfobamba deposit at Las Bambas due to illegal mining over the last 12 months taking the total estimated depletion due to illegal mining to 50kt Cu.

MINERAL RESOURCES AND ORE RESERVES STATEMENT 30 June 2022

ORE RESERVES

Ore Reserves as at 30 June (contained metal) have decreased for copper (-1%), zinc (-8%), lead (-19%), silver (-5%), gold (-5%), molybdenum (-13%) and cobalt (-0.2%).

Variations to Ore Reserves (contained metal) on an individual site basis are discussed below:

Increases:

There are no increases of metal in the 2022 Ore Reserves.

Decreases:

Decreases in Ore Reserves (metal) as stated above are due to:

- depletion at all producing operations;
- changes in modelling practices at Dugald River have had an adverse impact on lead (-23%) and silver (-18%), specifically in the Probable Ore Reserve category. This impact is not material from a value perspective as lead and silver combined represent less than 10% of the total Metal Zn Equivalent (4.5%);
- the reduction of copper metal (-6%) at Kinsevere, and at Rosebery (-6%) are both due depletion; and
- the reduction of zinc metal (-8%) at Dugald River and (-4%) at Rosebery are due to depletion net of minor model updates.

MINERAL RESOURCES AND ORE RESERVES STATEMENT 30 June 2022

KEY ASSUMPTIONS

PRICES AND EXCHANGE RATES

The following price and foreign exchange assumptions, set according to the relevant MMG Standard as at February 2022, have been applied to all Mineral Resources and Ore Reserves estimates. Price assumptions for all metals have changed from the 2021 Mineral Resources and Ore Reserves statement.

Table 2: 2022 Price (real) and foreign exchange assumptions

	Ore Reserves	Mineral Resources
Cu (US\$/lb)	3.38	4.04
Zn (US\$/lb)	1.17	1.39
Pb (US\$/lb)	0.89	1.06
Au US\$/oz	1,566	1,878
Ag US\$/oz	19.60	23.48
Mo (US\$/lb)	10.48	12.12
Co (US\$/lb)	20.60	30.30
USD:CAD	1.25	
AUD:USD	0.75	As per Ore Reserves
USD:PEN	3.71	

MINERAL RESOURCES AND ORE RESERVES STATEMENT 30 June 2022

CUT-OFF GRADES

Mineral Resources and Ore Reserves cut-off values are shown in Table 3 and Table 4, respectively.

Table 3: Mineral Resources cut-off grades

	Table	3: Mineral Reso	urces cut-off g	rades
Site	Mineralisation	Likely Mining Method ¹	Cut-Off Value	Comments
	Oxide copper		1% Cu ²	
	Primary copper Ferrobamba		0.16% Cu ² (average)	Cut-off is applied as a range that varies for each deposit
Las Bambas	Primary copper Chalcobamba	OP	0.18% Cu ² (average)	and mineralised rock type at Las Bambas. <i>In-situ</i> copper Mineral Resources constrained within US\$4.04/lb Cu and
	Primary copper Sulfobamba		0.20% Cu ² (average)	US\$12.12/lb Mo pit shell.
	Oxide copper & stockpiles	ОР	0.55% CuAS ³	/ '
Vin	Transition mixed ore copper (TMO)	OP	0.6% Cu ²	In-situ copper Mineral Resources constrained within a US\$4.04/lb Cu and US\$30.30/lb Co pit shell.
Kinsevere	Primary copper	OP	0.6% Cu ²	
	Oxide TMO Cobalt	OP	0.2% Co ⁴	In-situ cobalt Mineral Resources constrained within a
	Primary cobalt	OP	0.1% Co ⁴	US\$4.04/lb Cu and US\$30.30/lb Co pit shell, but exclusive of copper mineralisation.
	Oxide	OP	0.6% CuAS ³	
	TMO Copper	OP	0.8% Cu ²	In-situ copper Mineral Resources constrained within a
	Primary copper	OP	0.8% Cu ²	US\$4.04/lb Cu and US\$30.30/lb Co pit shell.
Sokoroshe 2	Oxide TMO cobalt	OP	0.2% Co ⁴	In-situ cobalt Mineral Resources constrained within a
	Primary cobalt	ОР	0.2% Co ⁴	US\$4.04/lb Cu and US\$30.30/lb Co pit shell, but exclusive of copper mineralisation above cut off.
	Oxide copper	OP	0.6% CuAS ³	
	TMO copper	OP	0.8% Cu ²	In-situ copper Mineral Resources constrained within a
Nambulwa /	Primary copper	OP	0.8% Cu ²	US\$4.04/lb Cu and US\$30.30/lb Co pit shell.
DZ ,	Oxide TMO cobalt	OP	0.2 Co ⁴	In-situ cobalt Mineral Resources constrained within a
	Primary cobalt	OP	0.2 Cu ⁴	US\$4.04/lb Cu and US\$30.30/lb Co pit shell, but exclusive of copper mineralisation.
	Oxide copper	OP	0.75% CuAS ³	In-situ copper Mineral Resources constrained within a
	TMO copper	OP	1.0% Cu ²	US\$4.04/lb Cu and US\$30.30/lb Co pit shell.
Mwepu	Primary copper	OP	1.0% Cu ²	
•	Oxide TMO cobalt	OP	0.3% Co ⁴	<i>In-situ</i> cobalt Mineral Resources constrained within a
	Primary cobalt	OP	0.2% Co ⁴	US\$4.04/lb Cu and US\$30.30/lb Co pit shell, but exclusive of copper mineralisation.
Rosebery	Rosebery (Zn, Cu, Pb, Au, Ag)	UG	A\$155/t NSR ⁵	All areas of the mine are reported using the same NSR cut-off value.
Described D'	Primary zinc (Zn, Pb, Ag)	UG	A\$145/t NSR⁵	All areas of the mine are reported using the same NSR cut-off value.
Dugald River	Primary copper	UG	1% Cu ²	All areas of the mine are reported at the same cut-off grade
High Lake	Cu, Zn, Pb, Ag, Au	ОР	2.0% CuEq ⁶	CuEq ⁶ = Cu + (Zn×0.30) + (Pb×0.33) + (Au×0.56) + (Ag×0.01): based on Long-Term prices and metal recoveries at Au:75%, Ag:83%, Cu:89%, Pb:81% and Zn:93%.
	Cu, Zn, Pb, Ag, Au	UG	4.0% CuEq ⁶	$CuEq^6 = Cu + (Zn \times 0.30) + (Pb \times 0.33) + (Au \times 0.56) + (Ag \times 0.01)$: based on Long-Term prices and metal

¹ OP = Open Pit, UG = Underground

² Cu = Total copper

³ CuAS = Acid Soluble copper

⁴ Co = Total Cobalt

⁵ NSR = Net Smelter Return

⁶ CuEq = Copper Equivalent

MINERAL RESOURCES AND ORE RESERVES STATEMENT 30 June 2022

Site	Mineralisation	Likely Mining Method ¹	Cut-Off Value	Comments
				recoveries at Au:75%, Ag:83%, Cu:89%, Pb:81% and Zn:93%.
Izok Lake	Cu, Zn, Pb, Ag, Au	ОР	4.0% ZnEq ¹	$ZnEq^1 = Zn + (Cu \times 3.31) + (Pb \times 1.09) + (Au \times 1.87) + (Ag \times 0.033)$; prices and metal recoveries as per High Lake.

Table 4 : Ore Reserves cut-off grades

Site	Mineralisation	Mining Method	Cut-Off Value	Comments
	Primary copper Ferrobamba		0.20% Cu ² (average) ³	Range based on rock type recovery.
Las Bambas	Primary copper Chalcobamba	ОР	0.23% Cu ² (average) ⁴	
	Primary copper Sulfobamba		0.25% Cu ² (average) ⁵	
Kinsevere	Copper oxide	ОР	0.5% CuAS ⁶	Approximate cut-off grades shown in this table for ex-pit material. Variable cut-off grade based on net value script.
		OP	0.5% CuAS ⁶	For existing stockpiles reclaim.
Rosebery	(Zn, Cu, Pb, Au, Ag)	UG	A\$155/t NSR ⁷	
Dugald River	Primary zinc	UG	A\$145/t NSR (average) ⁷	

¹ ZnEq = Zinc Equivalent

²Cu = Total copper

³ Range from 0.20 to 0.24% Cu

⁴ Range from 0.22 to 0.29% Cu

 $^{^{5}}$ Range from 0.24 to 0.29% Cu

⁶ CuAS = Acid Soluble Copper

⁷ NSR = Net Smelter Return

MINERAL RESOURCES AND ORE RESERVES STATEMENT 30 June 2022

PROCESSING RECOVERIES

Average processing recoveries are shown in Table 5. More detailed processing recovery relationships are provided in the Technical Appendix.

Table 5: Processing Recoveries

Site	Product		Red	covery				Concentrate Moisture Assumptions
		Cu	Zn	Pb	Ag	Au	Мо	
Las Davidas	Copper Concentrate	86%	-	-	75%	71%		10%
Las Bambas	Molybdenum Concentrate						55.5%	5%
	Zinc Concentrate		84%					7.8%
Б	Lead Concentrate		8%	77%	37%	16%		6%
Rosebery	Copper Concentrate	58%			40%	35%		8.7%
	Doré ¹ (gold and silver)				0.14%	24%		
D 110:	Zinc Concentrate	-	91%		35%	_		9.7%
Dugald River	Lead Concentrate	-		66%	36%	-		9.2%
	6 6 1 1	80%						
Kinsevere and	Copper Cathode	(96% CuAS ²)						
satellites	Cobalt Precipitate	64% Co Recovery						

The Technical Appendix published on the MMG website contains additional Mineral Resources and Ore Reserves information (including the Table 1 disclosure).

¹ Silver in Rosebery doré is calculated as a constant ratio to gold in the doré. Silver is set to 0.17 against gold being 20.7

² CuAS = Acid Soluble Copper